

Biodiversity and ecosystem services: How are they linked in the real world?

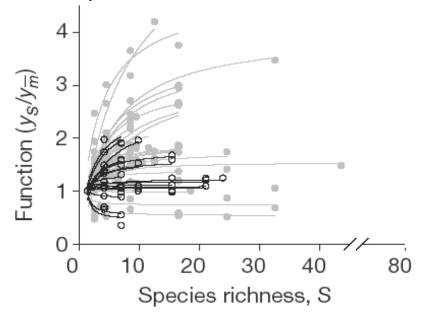
James Bullock

IPBES Global Assessment

"Nature and its vital contributions to people, which together embody biodiversity and ecosystem functions and services, are deteriorating worldwide"

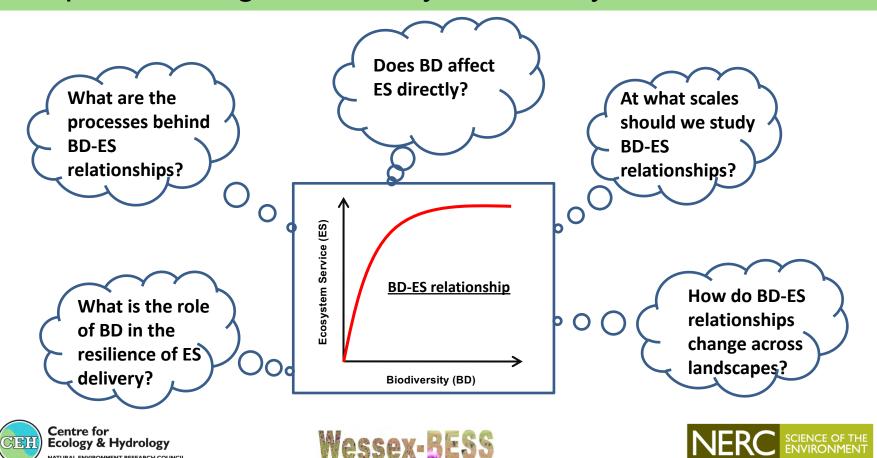
Biodiversity, ecosystem functions & ecosystem services

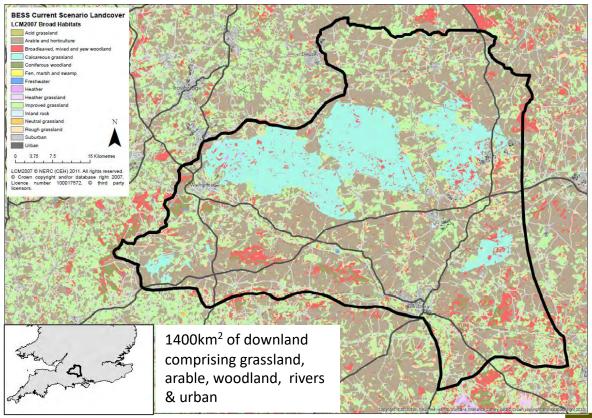
Biodiversity measure	Intermediate functions	Final services	
Plant & soil biodiversity	C sequestration, GHG emissions	Climate regulation, forage production	
Freshwater biodiversity ->	Nutrient cycling, trophic webs	Fish production, water quality	Adapted from UK National Ecosystem
Insect & landscape diversity	Pollination, pest	Crop production	Assessment
Species &	Recreation, aesthetics	Cultural services	



Evidence for (positive) BD-ES relationships

- from pot or plot scale species richness ecosystem function (BD-EF) experiments
- often EF = production or related measure





Concepts in linking biodiversity and ecosystem services

A varied lowland landscape

Research along a biodiversity gradient

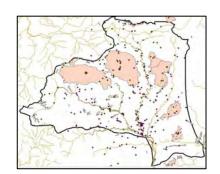
Semi-natural

Restoring

Intensive agriculture

Wessex-BESS

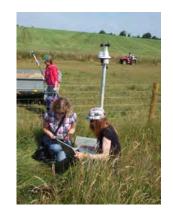
A variety of ecosystem services

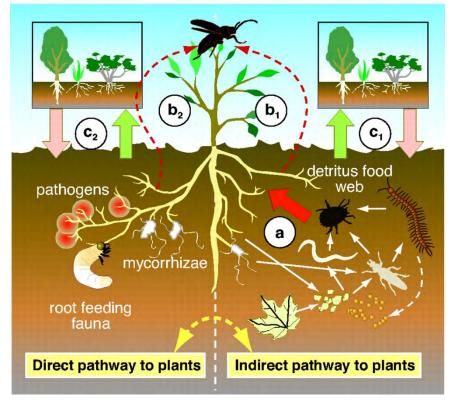

GHG & soil processes

Clean water & fisheries

Pollination & pest control

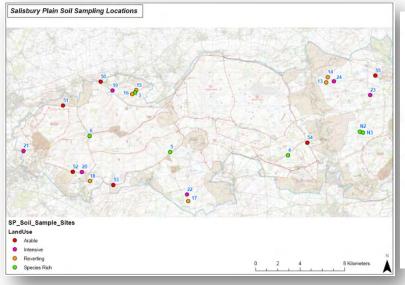
Cultural services

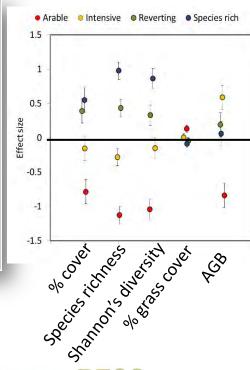


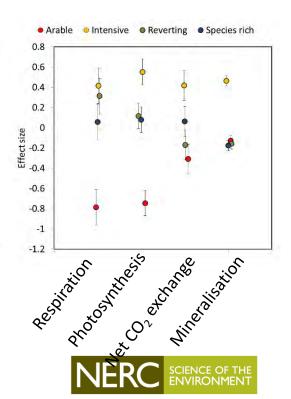


Greenhouse Gases & Soil Processes

Wardle et al Science 2004







Greenhouse Gases & Soil Processes

Landscape gradient study. No clear relationship between plant diversity & soil processes

Wessex-BESS

Greenhouse Gases & Soil Processes

Experiment – functional diversity in restored grassland

Top of slope	Plot 1 FG2	Plot 2 FG3	Plot 3 FG1&2	Plot 4 FG1&3	Plot 5 FG1	Plot 6 FG2&3	Plot 7 FG1,2&3			
		Plot 8 FG1	Plot 9 FG1&2	Plot 10 FG2	Plot 11 FG1,2&3	Plot 12 FG2&3	Plot 13 FG3	Plot 14 FG1&3		
		Plot 15 FG2	Plot 16 FG1&3	Plot 17 FG1&2	Plot 18 FG3	Plot 19 FG2&3	Plot 20 FG1	Plot 21 FG1,2&3		~87m
			Plot 22 FG2&3	Plot 23 FG3	Plot 24 FG1&2	Plot 25 FG2	Plot 26 FG1,2&3	Plot 27 FG1&3	Plot 28 FG1	
			Plot 29 FG3	Plot 30 FG1,2&3	Plot 31 FG1	Plot 32 FG2&3	Plot 33 FG1&2	Plot 34 FG2	Plot 35 FG1&3	
ttom of slope				Plot 36 FG2	Plot 37 FG1	Plot 38 FG3	Plot 39 FG2&3	Plot 40 FG1&3	Plot 41 FG1&2	Plot 42 FG1,2&3

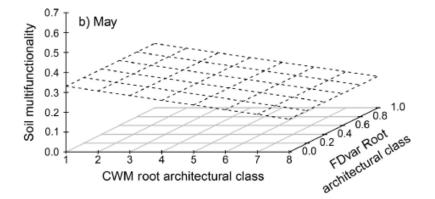
FG1: Variable longevity, deep roots, large leaves

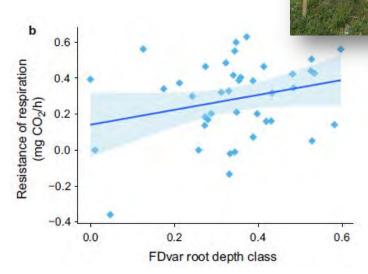
FG2: Long lived, small

rosettes, shallow

FG3: Long lived, shallow

roots, thick leaves

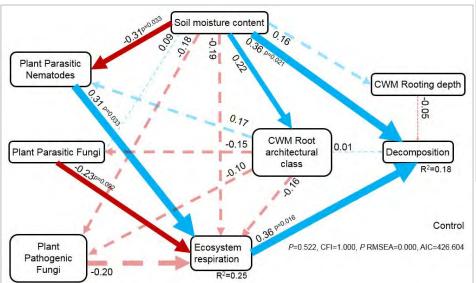


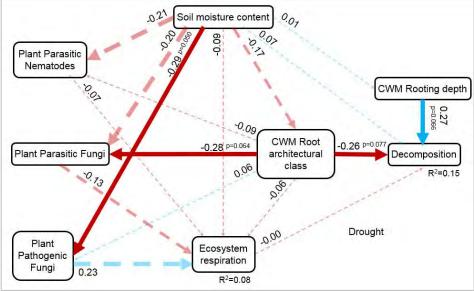


Restoration experiment – functional diversity

Trait values & diversity drive soil functions & resilience

Multifunctionality = respiration, soil nutrients, N emissions, Carbon

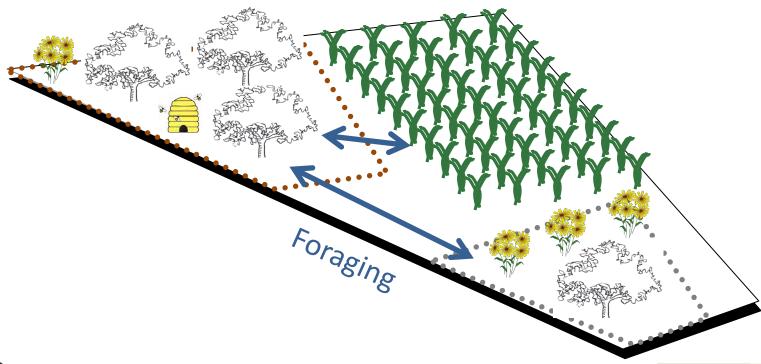

Fry, E.L., Savage, J., Hall, A.L., Oakley, S., Pritchard, W.J., Ostle, N.J., Pywell, R.F., Bullock, J.M. & Bardgett, R.D. (2018) Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology, 99, 2260-2271.



Functional diversity & the soil food web

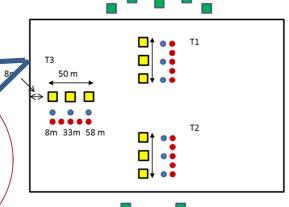
No drought: strong relationships between soil food web & ecosystem processes – respiration & decomposition

<u>Drought</u>: decoupling of relationships. But plant root traits become important



Fry et al. (in prep)

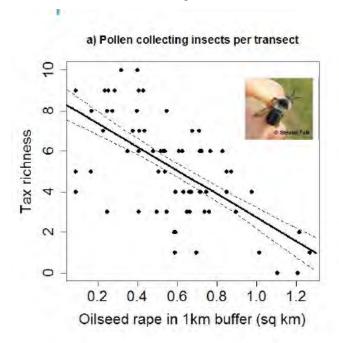
Pollinators, crop pollination and landscape diversity

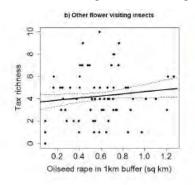


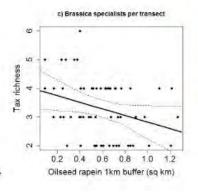
Landscape structure & crop pollination

Oilseed rape fields with different amount of semi-natural grassland

- Pollinator quadrat
- Pitfall trap and water trap
- Natural enemy count Suction sampling point Plants marked for yield
 - Margin plant survey (if margin)



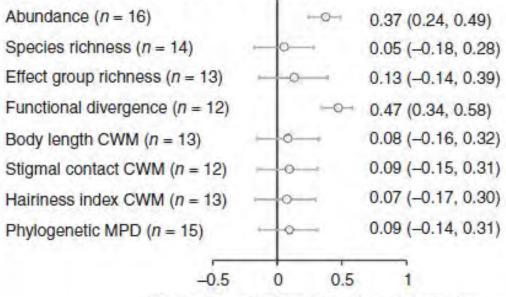



Pollinators not driven by semi-natural land cover

Main landscape driver = oilseed rape crops

Shaw et al. (in review)

Amount OSR: taxonomic group, $F_{3,96} = 12.74***$



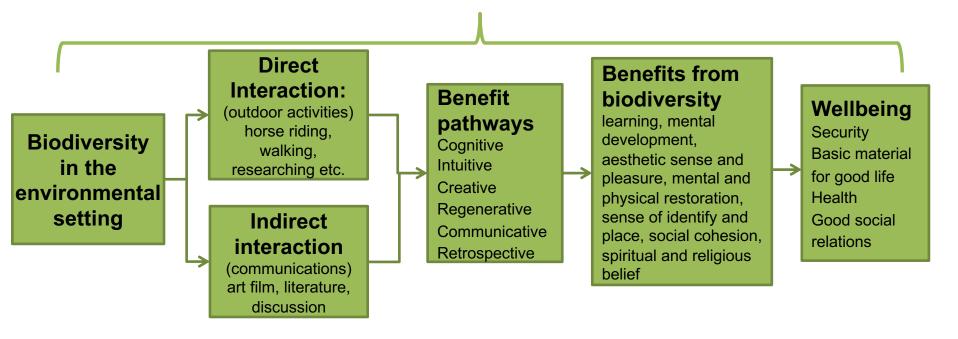
Oilseed rape yield increased by pollinator abundance and trait diversity

Meta-analysis

Natural pollinator communities (field studies)

Woodcock, B. A., ..., J. M. Bullock, and R. F. Pywell. 2019. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nature Communications 10:1481

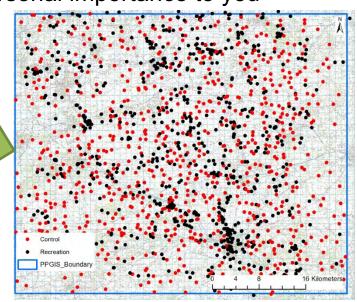
Cultural services, species and landscape diversity



Cultural services & biodiversity

Mechanisms by which people benefit from biodiversity

King, H.P., Morris, J., Graves, A., Bradbury, R.B., McGinlay, J. & Bullock, J.M. (2017) Biodiversity and cultural ecosystem benefits in lowland landscapes in southern England. *Journal of Environmental Psychology*, 53, 185-197.

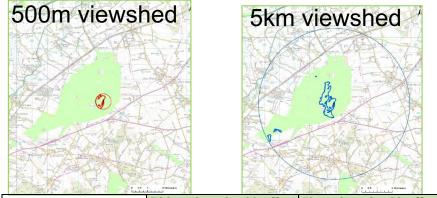


Landscape scale – reported important places

Public Participation GIS (PPGIS)

3 http://www.spgir.manchester.ac.uk/bess/ D - C Online survey: the benefits _ Google ppgis wessex bess * More 39 Cranfield Welcome to the Wessex-BESS survey on the benefits of Wiltshire green places We need you to tell us about the outdoor places and benefits you get from your local countryside! This survey is part of a combined natural and social science research project based around Salisbury Plain called Wassen-HTSS. It is studying different ways that biodiversity helps people to live healthy, happy lives, Follow this link to learn more about William 1855 h

"Mark on the map 3 outdoor places of personal importance to you"


466 selected points

Important spaces relate to landscape variables

	500m viewshed buffer	5km viewshed buffer
Altitude		
Distance to urban		
Grassland	Coefficients from _	
Historic	multi-model _	
Land cover diversity	inferencing _	
Protected area	9	
Protected area diversity		
River	_	_
Urban cover		
Viewshed area		
Woodland		

- Protected areas, accessibility, land cover and land form influence the delivery of cultural services
- Some variation over different visual scales
- Also depending on form of engagement;
 e.g. + rivers for recreation, + historic
 monuments for cognitive benefits
- Need for landscapes of high ecological quality, diverse and near to towns

Ridding, L.E., J.W. Redhead, T.H. Oliver, R. Schmucki, J. McGinlay, A.R. Graves, J. Morris, R.B. Bradbury, H. King, and J.M. Bullock. 2018. The importance of landscape characteristics for the delivery of cultural ecosystem services. *Journal of Environmental Management* 206, 1145-54.

Self-reported satisfaction with species types

- 549 face-to-face interviews across study area
- Aims:
 - Quantify the satisfaction that members of public get from particular species groups
 - 2. Relate variation in benefits to the charisma of species groups

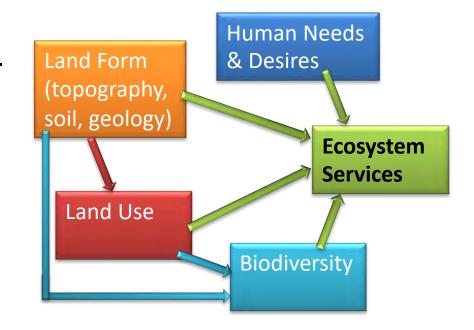
	Effect on enjoyment or satisfaction from the countryside							
	Very negative	Quite negative	Slightly negative	Neither positive nor negative	Slightly positive	Quite positive	Very positive	
1	1						\Rightarrow	
Present as they are now	0	0	0	0	0	0	0	
No longer present at all	0	0	0	0	0	0	0	
Decreased presence*	0	0	0	0	0	0	0	
Increased presence**	0	0	0	0	0	0	0	

McGinlay, J., Parsons, D.J., Morris, J., Hubatova, M., Graves, A., Bradbury, R.B. & Bullock, J.M. (2017) Do charismatic species groups generate more cultural ecosystem service benefits? *Ecosystem Services*, 27, 15-24

People report benefits from biodiversity

High charisma

McGinlay, J., Parsons, D.J., Morris, J., Graves, A., Hubatova, M., Bradbury, R.B. & Bullock, J.M. (2018) Leisure activities and social factors influence the generation of cultural ecosystem service benefits. *Ecosystem Services*, 31, 468-480; McGinlay, et al. (2017)

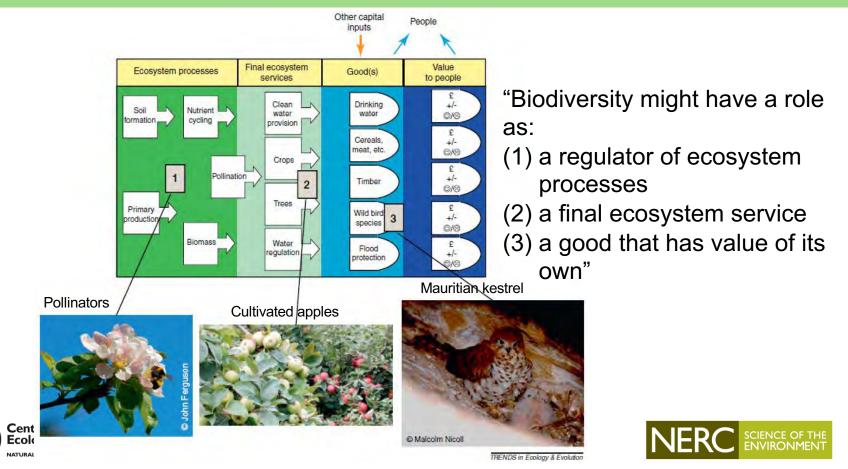

Wessex-BESS

- More benefits from more "charismatic" species
- Greater benefits reported by people engaged in 'nature activities
- Less charismatic species liked by people engaged in nature activities
- Biodiversity in the local landscape gives benefits to the public

Conclusions: Biodiversity-EF-ES relationships

- Ecosystem services ≠ ecosystem functions
- Ecosystem services require largescale research and variety of methods
- Land use is a primary driver of ecosystem services
- Biodiversity sometimes adds to ecosystem services

Project team & funding



Are biodiversity and ecosystem services linked?

