

The 10-tenets relating to Non-indigenous species – natural and social sciences

Mike Elliott, Department of Biological & Marine Sciences, University of Hull, Hull, HU6 7RX, UK; International Estuarine & Coastal Specialists (IECS) Ltd, Leven, HU17 5LQ, UK.

Management Questions:

- Where are the problems & What changes do they cause?
- What is the impact of these on ecosystem structure and functioning?
- What are the repercussions for ecosystem valuation based on economy-ecology interactions?
- What are the future environmental changes and economic futures?
- What governance framework is there, what do stakeholders need?
- What can we do about the problems?
- Where are the risks and how to address them now and in the future?
- What are the governance successes, failures and implications?
- How 'good' is the decision-making?
- What are the bottlenecks, showstoppers and train-wrecks?

	Hazard leading to Risk (depending on assets)		Relevance to NIS	
/	A) Surface hydrological hazards		\checkmark	LIB
١	B) Surface physiographic removal by natural processes - chronic/lo			
	C) Surface physiographic removal by human actions - chronic/long			
	D) Surface physiographic removal - acute/short-term			
	E) Climatological hazards - acute/short term	\checkmark		
	F) Climatological hazards - chronic/long term	\checkmark		
	G) Tectonic hazards - acute/short term			
	H) Tectonic hazards - chronic/ long term			
	I) Anthropogenic microbial biohazards	\checkmark		
J) Anthropogenic macrobial biohazards			\checkmark	
	() Anthropogenic introduced technological hazards		\checkmark	
	L) Anthropogenic extractive technological hazards		\checkmark	
	M) Anthropogenic acute chemical hazards	Chapter 1		
	N) Anthropogenic chronic chemical hazards	A Synthesis: What Is the Future for C Estuaries, Deltas and Other Transitio		S
	O) Anthropogenic acute geopolitical hazards			3,
	P) Anthropogenic chronic geopolitical hazards Habitats in 2050 and		l Beyond?	
		Michael Elliott, John W. Dav, Ramesh Ramachand	can [®] , Eric Wolanski [®]	

Challenges for management (RA&RM; OA&OM):

Risk Assessment:

- Where are the problems and what changes do they cause? (ExUP & EnMP)
- What is their impact on ecosystem structure and functioning?
- What are the repercussions for ecosystem valuation based on economyecology interactions?
- What are the future environmental changes and economic futures?

Risk Management:

- What governance framework is there, what do stakeholders need & what are successes & failures?
- What can we do about the problems, hazards & risks and how to address them now and in the future?
- How 'good' is the decision-making?

And the corollary: Opportunity Assessment and Management

(Elliott, 2014 Mar. Poll. Bull.; Cormier et al 2019 OCMA, and others)

The 10 tenets:

To be successful, management measures or responses to changes resulting from human activities should be:

- Ecologically sustainable
- Technologically feasible
- Economically viable
- Socially desirable/tolerable
- Legally permissible
- Administratively achievable
- Politically expedient
- Ethically defensible (morally correct)
- Culturally inclusive
- Effectively communicable

Editorial

Marine science and management means tackling exogenic unmanaged pressures and endogenic managed pressures – A numbered guide

	Marine Pollution Bulletin 74 (2013) 1-5	
	Contents lists available at ScienceDirect	ARABINE POLLUTION BULLETIN
	Marine Pollution Bulletin	
ELSEVIER	journal homepage: www.elsevier.com/locate/marpolbul	- =

Editorial

The 10-tenets for integrated, successful and sustainable marine management

Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/envsci

CrossMark

The 10-tenets of adaptive management and sustainability: An holistic framework for understanding and managing the socio-ecological system

Steve Barnard *, Michael Elliott

(cf. PESTLE)

The 10-tenets: For understanding and managing the problem - to be successful, management measures or responses to changes resulting from human activities should be:

Attribute/	Relevance to NIS/Research areas
Management	
requirement	
Ecology/	Traits analysis (same attributes-different label?); changes
Ecologically	to ecosystem; displacement of species; differences at
sustainable	biological levels (cell, individual, population, community,
	ecosystem); structure and functioning, ecological
	functioning leading to services; technologies for monitoring
	at all levels; adaptation to changing systems; natural
	changes? (but for spatial and temporal scales); ephemeral
	systems?; 'artificial science concern?'

Techniques/ Technologically feasible

Economics/ Economically viable Mechanisms for control, ballast water, port activities; cleaning once detected; techniques for already existing problem; technologies for data and monitoring and for determining the problem; technologies for cleaning; deficient science technologies (less on taxonomy)?

Cost of control (close the Suez Canal?), increased navigation costs; port costs; opportunities for consuming NIS; costs and effects on Ecosystem Services and Societal Goods and benefits; economic costs and benefits; costbenefit analysis of leaving or removing; costs of damage (e.g. power plants); costs of monitoring; employment possibilities - changed fisheries or aquaculture target species – threats and opportunities (e.g. CERES)

Societal concerns for health and well-being (real or Society/Socially imagined effects on people); consumer patterns and desirable/ opportunities; changes of attitude; citizen science; assumed tolerable concerns - awareness or not bothered? force majeure?; biosecurity and habitat legislation (HSD); Law/Legally permissible health and safety protection law; national, EU, international (RSC) and global (e.g. IMO) instruments; vertical and horizontal governance; conundrum regarding fishing bylaws (control vs. exploitation) (e.g. Poole Bay Manila clam); MSFD implementation and infraction (e.g. Suez Canal); agreements (SDG14, CITES, G7, UNDOS, UN-DER)

Statutory	Different bodies with control (ministries and agencies for
bodies/	environment, fisheries, transport, energy, etc); competent
Administratively	authorities; competing competencies
achievable	
Politics/	Political pros and cons, balancing positives and negatives;
Politically	NIMTOO?; public awareness, 'sexy topics', 'knee-jerk
expedient	politics'
Ethics (Morals) /	Acceptance of changes to system; ethics and morals of
Ethically	species control (fish vs. seal?); costs of control passed to
defensible	future generations; how we regard naturalised species;
(morally correct)	philosophy of way to regard a species in an area ('once an
	alien, always an alien'?); what is 'natural'?

Culture/	Did indigenous/poor peoples worry about NIS or just eat	
Culturally	ally what was available?; cultural response to the term 'alien	
inclusive	species'; what is 'ours' - xenophobic attitudes; welfare	
	concerns; societal response to science; change of diet;	
	adaptation to climate change	
Communication/	Software for cataloguing/prediction; stakeholder	
Effectively	consultation; who cares - league table of concerns?;	
communicable	dissemination diamond, high public awareness?;	
	information exchange; databases for all disciplines; role of	
	ICT in science and management	

Final Messages:

Catalogue the activities and pressures in an area, and the effects on the natural and human systems – 'What if?' and 'So what?' (*Are aliens a problem for nature or for people?*)

Determine the natural and anthropogenic hazards and risks in an area

Using the 10-tenets determine the solutions to reduce or tolerate these

Determine the opportunities of benefit to nature and/or society

Using the 10-tenets indicate the way of achieving or maximising the opportunities

Consider future scenarios & managing moving baselines - monitoring/ modelling/management - adaptive systems - interdisciplinary – natural and social sciences;

Future – more information, better and more adaptable management, more comprehensive management

Thanks for the invitation and for listening!

Mike.Elliott@hull.ac.uk Mike.Elliott@iecs.ltd http://www.hull.ac.uk/Faculties/staff-profiles/Professor-Mike-Elliott.aspx https://www.iecs.ltd