

ARMS workflow

photographic and genetic data from Autonomous Reef Monitoring Structures to track NIS colonisation of European waters and monitor long-term changes of marine hard-bottom communities (The "what is this all about" part)

Katrina Exter (VLIZ), Matthias Obst (UGot), Christina Pavloudi (HCMR)

- What is an ARMS unit?
- What is the ARMS MBON project?
- What samples and data do we have?
- Where are the data archived and how are they linked?
- What science can we do with these data?
- What would we like the workflow to do, and why?

- A stack of settlement plates, off-the shelf with a standardised construction and setup, and reusable
- Emplaced on hard underwater surfaces (the sea bottom, a harbour wall, ...) to encourage the surrounding colonising species to settle on and between the plates
- Left in place for months at a time: shorter periods to look for NIS, longer periods for biological monitoring
- Once retrieved, the plates with their colonists and the surrounding water samples are photographed, filtered and preserved, and sequenced (COI, ITS, 18S)
- ARMS units were developed under the Census of Marine Life project and the Global ARMS project has expanded since then

- A stack of settlement plates, off-the shelf with a standardised construction and setup, and reusable
- Emplaced on hard underwater surfaces (the sea bo encourage the surrounding colonising species to se
- Left in place for months at a time: shorter periods to biological monitoring
- Once retrieved, the plates with their colonists and the photographed, filtered and preserved, and sequence
- ARMS units were developed under the Census of N ARMS project has expanded since then

е

- A stack of settlement plates, off-the shelf with a standardised construction and setup, and reusable
- Emplaced on hard underwater surfaces (the sea bottom, a harbour wall, ...) to encourage the surrounding colonising species to settle on and between the plates
- Left in place for months at a time: shorter periods to look for NIS, longer periods for biological monitoring
- Once retrieved, the plates with their colonists and the surrounding water samples are photographed, filtered and preserved, and sequenced (COI, ITS, 18S)
- ARMS units were developed under the Census of Marine Life project and the Global ARMS project has expanded since then

- A stack of settlement plates, off-the shelf with a standardised construction and setup, and reusable
- Emplaced on hard underwater surfaces (the sea bottom, a harbour wall, ...) to encourage the surrounding colonising species to settle on and between the plates
- Left in place for months at a time: shorter periods to loc biological monitoring
- Once retrieved, the plates with their colonists and the s photographed, filtered and preserved, and sequenced (
- ARMS units were developed under the Census of Man ARMS project has expanded since then

- A stack of settlement plates, off-the shelf with a standardised construction and setup, and reusable
- Emplaced on hard underwater surfaces (the sea bottom, a harbour wall, ...) to encourage the surrounding colonising species to settle on and between the plates
- Left in place for months at a time: shorter periods to look for NIS, longer periods for biological monitoring
- Once retrieved, the plates with their colonists and the surrounding water samples are photographed; scraped, filtered, and preserved; and sequenced (COI, ITS, 18S)
- ARMS units were developed under the Census of Marine Life project and the Global ARMS project has expanded since then

- A stack of settlement plates, off-the shelf with a standardised construction and setup, and reusable
- Emplaced on hard underwater surfaces (the sea bottom, a harbour wall, ...) to encourage the surrounding colonising species to settle on and between the plates
- Left in place for months at a time: shorter periods to look for NIS, longer periods for biological monitoring
- Once retrieved, the plates with their colonists and the surrounding water samples are photographed; scraped, filtered, and preserved; and sequenced (COI, ITS, 18S)
- ARMS units were developed under the *Census of Marine Life* project and the Global ARMS project has expanded since then

- Part of the EMBRC/ASSEMBLE Plus Joint Research Activity on Genomics Observatories (<u>https://www.assembleplus.eu/research/ARMS-MBON</u>)
- Is a network of ~20 partners placing ARMS units in the vicinity of marine stations, ports, marinas, and LTER sites distributed over Europe and polar regions.
- The aim is to assess the status of, and changes in, hard-bottom communities of near-coast environments, using genetic methods supplemented with image analysis and visual inspection methods
- Explained in detail in <u>https://www.frontiersin.org/articles/10.3389/fmars.2020.572680/full</u>

- Part of the EMBRC/ASSEMBLE Plus Joint Research Activity on Genomics Observatories (<u>https://www.assembleplus.eu/research/ARMS-MBON</u>)
- Is a network of ~20 partners placing ARMS units in the vicinity of marine stations, ports, marinas, and LTER sites distributed over Europe and polar regions.
- The aim is to assess the status of, and changes in, hard-bottom communities of near-coast environments, using genetic methods supplemented with image analysis and visual inspection methods
- Explained in detail in

https://www.frontiersin.org/articles/10.3389/fmars.2020.572680/full

What samples and what data do we have?

Material samples

- Plates are scraped, filtered, preserved, and sent to HCMR for sequencing
- Backup samples are kept in the partner labs

Observation data – standardised spreadsheets with species identifications

- Visual observations made during the retrieval of the plates
- Visual inspection of the plates made in the lab while processing
- Manual analysis of the plate photographs

Digital data

- Photographs of the plates taken in the lab
- Metabarcoding data (raw sequences) (HCMR)

What samples and what data do we have?

Processed data

- Processed sequences (cleaned and clustered, OTU tables/ASV files with taxonomic assignments matched to WoRMS)
- (Semi-)automatic analysis of the images (species identifications matched to WoRMS, measure of quantity)

Up to today, we have

- 1 test year, 2 full years, and we are in our 3rd year now
- 21 observatories
- Per observatory, per each sampling event
 - 3 material samples (sessile and motile fractions)
 - dozens of images (ARMS plates, interesting specimens, etc
 - \circ 9 fastq files

Archiving and linking the data

Archiving and data storage

- PlutoF data management platform (internal project use)
- VLIZ's Marine Data Archive
- ENA for raw sequences
- Looking for an appropriate image archive and an archive for ASV/OTU data

Linking the data

- Data are linked to each other via a standardised "logsheet" made FAIR and open access via its metadata record in the Integrated Marine Information System (<u>https://www.vliz.be/en/imis?module=dataset&dasid=6405</u>)
- Species identifications made from photographic, visual, and sequence data to be published via EurOBIS; within the DwC-A data format we need to link these multiple lines of evidence for each species, to the data they were found from

IMIS		
	Publications Institutes Persons Datasets Projects Maps	
report an error in this record]		<u>A</u>

ARMS 2018 dataset on long-term monitoring and biodiversity assessment of invasive and indigenous hard-bottom communities

Citation

Obst, M.; Pavloudi, C.; Gerovasileiou, V.; Exter, K.; Department of Marine Sciences; Faculty of Science. University of Gothenburg: Sweden; Institute of Marine Biology; Biotechnology and Aquaculture. Hellenic Centre for Marine Research: Greece; Flanders Marine Institute: Belgium; (2020); ARMS 2018 dataset on long-term monitoring and biodiversity assessment of Invasive and Indigenous hard-bottom communities. http://www.asembleplus.eu/information-system?module=dataset&dasid=6405

Contact: Obst. Matthias

LifeWatch ERIC e-Science for NIS research workshop | 20-21 May 2021

Archiving and linking the data

		A	В	С			D			E		F	G	Н	1		J	K	L
1	Cour	ntry	Observator	ARMS	Materia	Sampl	elD			longitu	Jde	latitude	dept	Deploy	D. Collect	D physic	alSamp	Fraction	Preserv
2	NA	-	NA	NA	NA					decim	alDec	decimalDe	g mete	NA	NA	NA		NA	NA
3	Gree	ce	Crete	1HERF	ARMS	Crete	1HERP	180928-1	90128.	25.13	36605	35.343153	3 5	2018-09	-2 2019-0	1-2 ARMS	_14	sessile	DMSO
4	Gree	ece	Crete	1HERF	ARMS	Crete	1HERP	180928-1	90128	25.13	36605	35.343153	3 5	2018-09	-2 2019-0	1-2 ARMS	15	sessile	EtOH
5	Gree	ece	Crete	1HERF	ARMS	Crete	1HERP	180928-1	90128	25.13	36605	35.343153	3 5	2018-09	-2 2019-0	1-2 ARMS	16	motile	DMSO
6	Gree	ce	Crete	1HERF	ARMS	Crete	1HERP	180928-1	90128	25.13	36605	35.343153	3 5	2018-09	-2 2019-0	1-2 ARMS	17	motile	EtOH
7	Gree	ce	Crete	1HERP	ARMS	Crete	1HERP	180928-1	90128	25.13	36605	35.343153	3 5	2018-09	-2 2019-0	1-2 ARMS	18	sediment	frozen
8	Gree	ce	Crete	1HERF	ARMS	Crete	1HERP	180928-1	90128	25.13	36605	35.343153	3 5	2018-09	-2 2019-0	1-2 ARMS	19	plankton	EtOH
	М		N		0		P		Q			R			S				т
Filte	er	gene	COI	gene 1	18S	gene	ITS	negativ	eContro	ol ger	negat	iveControl	gern	egative	Control ge	or OtherDa	ata m2	mlink	
mic	rome	ENA	RunAcces	ENA F	RunAcce	ENA	RunAco	CerENA F	RunAcce	ession	ENA	RunAcces	sion E	NA Ru	Accessio	PNA	_		
	40	ERR	3460466	ERR40	18423	ERR	1018429	ERR34	160471		ERR4	018474	E	RR4018	475	NA			
	40	ERR	3460467	ERR40	018424	ERR	1018430	ERR34	160471		ERR4	018474	E	RR4018	475	NA			
	500	ERR	3460468	ERR40	18425	ERR	1018431	ERR34	160471		ERR4	018474	E	RR4018	475	NA			
	500	ERR	3460469	ERR40	18426	ERR	4018432	ERR34	160471		ERR4	018474	E	RR4018	475	NA			
NA		ERR	3460470	ERR40	018427	ERR	4018433	ERR34	160471		ERR4	018474	E	RR4018	475	NA			
	250	NA		ERR40	18428	ERR	1018434	ERR34	160471		ERR4	018474	E	RR4018	475	NA			
NA		NA		NA		NA		NA			NA		N	IA		https://n	nda.vliz	be/download	d.php?file=
NA		NA		NA		NA		NA			NA		N	IA		https://n	nda.vliz	be/download	d.php?file=

From a pilot study (2 sites, 1 year):

- ~70 identified species with only 4-8% overlap between genetic- and image-based species for each site
- 16 of the detected species were NIS (alien or cryptogenic to the region of detection)
- High number of NIS on Crete ARMS (Eastern Mediterranean is a region of substantial biological invasion), and low number on Swedish ARMS (Marine Protected Area)
- Taxonomic shift between genetic fractions: sessile fractions dominated by chordates; motile fractions by arthropods, nematodes, mollusks and single cellular eukaryotes

From a pilot study (2 sites, 1 year):

- ~70 identified species with only 4-8 species for each site
- 16 of the detected species were NI detection)
- High number of NIS on Crete ARM substantial biological invasion), and Protected Area)
- Taxonomic shift between genetic fr image-based chordates; motile fractions by arthr(eukaryotes

COLbased

image-based

netic- and image-based

to the region of

an is a region of sh ARMS (Marine

s dominated by lusks and single cellular

From a pilot study (2 sites, 1 year):

- ~70 identified species with only 4-8% overlap between genetic- and image-based species for each site
- 16 of the detected species were NIS (alien or cryptogenic to the region of detection)
- High number of NIS on Crete ARMS (Eastern Mediterranean is a region of substantial biological invasion), and low number on Swedish ARMS (Marine Protected Area)
- Taxonomic shift between genetic fractions: sessile fractions dominated by chordates; motile fractions by arthropods, nematodes, mollusks and single cellular eukaryotes

LifeWatch ERIC e-Science for NIS research workshop | 20-21 May 2021

based

From a pilot st

 ~70 identif species for

Wha

- 16 of the d detection)
- High numb substantia
 Protected
- Taxonomic chordates; eukaryotes

One ARMS in a Marina on Crete returned 15 non-indigenous species

the second s			A CONTRACTOR OF A CONTRACTOR A		and the second second		
Species	NIS status	Taxon	Source	Sequence reads	Confidence	ARMS	
Clytia linearis (as C. hemisphaerica)	AL	Hydrozoa	ERR13:415770.613156	1	1.00	Greece	
Cephalothrix simula	CR	Nemertea	ERR6:336120.637271	380	1.00	Greece	
Bugula neritina	CR	Bryozoa	ERR3:1130880.648428	17	1.00	Greece	
Bugulina stolonifera (as Bugula stolonifera)	CR	Bryozoa	ERR4:1011990.601062	30	1.00	Greece	
Amphibalanus amphitrite	CR	Crustacea	ERR3:111700.649742	321	1.00	Greece	
Balanus trigonus	AL	Crustacea	ERR9:501910.609480	32	1.00	Greece	
Aonocorophium acherusicum	CR	Crustacea	ERR5:433720.605205	96	1.00	Greece	
Anteaeolidiella lurana	CR	Mollusca	ERR3:1097540.663621	56	1.00	Greece	
Pinctada imbricata radiata (as Pinctada radiata)	AL	Mollusca	Image	NA	NA	Greece	-
Botryllus schlosseri	CR	Tunicata	ERR3:1093300.604240	97	1.00	Greece	
Ascidiella aspersa	AL	Tunicata	Image	NA	NA	Greece	
			ERR16:281940.641233	6	1.00		
Ciona robusta	AL	Tunicata	Image	NA	NA	Greece	
Clavelina lepadiformis	CR	Tunicata	Image	NA	NA	Greece	
lerdmania momus	AL	Tunicata	ERR3:387270.604124	15	1.00	Greece	
Phallusia nigra	AL	Tunicata	Image	NA	NA	Greece	

Kesehar Turkoye

AL, alien species; CR, cryptogenic species; NA, Non-applicable. Non-accepted names in the PEMA output were replaced with accepted synonyms.

From a pilot study (2 sites, 1 year):

- ~70 identified species with only 4-8% overlap between genetic- and image-based species for each site
- 16 of the detected species were NIS (alien or cryptogenic to the region of detection)
- High number of NIS on Crete ARMS (Eastern Mediterranean is a region of substantial biological invasion), and low number on Swedish ARMS (Marine Protected Area)
- Taxonomic shift between genetic fractions: sessile fractions dominated by chordates; motile fractions by arthropods, nematodes, mollusks and single cellular eukaryotes

From a pilot study (2 sites, 1 year):

- ~70 identified species with only 4-8% overlap between genetic- and image-based species for each site
- 16 of the detected species were NIS (alien or cryptogenic to the region of detection)
- High number of NIS on Crete ARMS (Eastern Mediterranean is a region of substantial biological invasion), and low number on Swedish ARMS (Marine Protected Area)
- Taxonomic shift between genetic fractions: sessile fractions dominated by chordates; motile fractions by arthropods, nematodes, mollusks and single cellular eukaryotes

LifeWatch ERIC e-Science for NIS research workshop | 20-21 May 2021

What science can we produce from ARMS data?

Acertia clause

Acartia Ionsa

nohibelarus

alarius euxin

Cancella mutic

lassa marriora

dyg aranaria' dythus trosaul 'amila avirost

hooeraea con

perus aurad

Explorative studies using more sites and years

 35 alien species detected across 19 ARMS in 2020

80	Exten	Klass	Max likhet (%)
	Arthropoda	Copepoda	100
	Arthropoda	Copepode	100
alforme.	Rhodaphyla.	Fordecohyceae.	100
fae.	Rhoduphyta	Fondecohyceae,	100
	Boyana.	Gynoslaemala	99.67
adultate.	Actoropoda	Thecostraca	100
1993	Artimpoda	Thecositraca	100
N949	Arthropoda	Thecostreca	100
aingraphida	Etodophyta	Fordecotyceae.	98.71
mitra	Bhodophyta,	Floridecphyceae	100
	Arthropoda	Copepoda	100
	Actoropoda	Malacostraca	100
	Mollusca	Gastropoda.	100
	Bhodashata.	Foridecotyceae	98.00
nica	Rhodophyta.	Fondecohyceae	100
	Molunce	Gastroods.	99.35
-	Cristana.	Hudrocoa	100
	Moltanca	Gestopoda.	96.68
	Amelia	Putytheeta	98.00
apira	Malanta	Gastrooda	99.00
	Arthropoda	Malacostraca	100
M.	Mohace	Bratria.	19.00
1	Ctenophora	Tentaculata	99.80
chessissem	Arthropoda	Malacostraca	100
extonae.	Arthropoda	Malacostraca	100
	Molusca	Bixelvia.	100
	Molunca	Bixalvia.	100
	Attripola	Branchicooda	100
diformia	Arthropoda	Copepoda	99.00
	Atoelda	Potstarta	100
-	Annelida	Polychaeta	100
INDIANA.	Outrophyla	Dictyschophyceael	98
CATHA .	Attracoda	Casegoda	16.68
A RANGE	Chordata	Actinopteri	100
			1.350

Explorative studies using more sites and years

 Connectivity studies for endangered species, alien species, and rare species

Hypotheses testing

- Natural and human-mediated connectivity on a continental scale
- · Evenness in benthic habitats in time and space
- Stepping-stone hypotheses for Marine Protected Areas (MPAs)
- Effectiveness of preventive measures (e.g. Ballast Water Mgmt Convention)

What would we like the LW workflow to do?

- 1. Access the Master logsheet from the IMIS metadata record
- 2. Inspect the ARMS data availability via the logsheet
- 3. Chose which parts of the ARMS data you want to work on \triangle
 - a. Date(s)
 - b. Location(s)
 - c. Sequence file(s)
 - d. Image(s)
- 4. Chose which workflow "path" you want to follow \triangle
 - a. Raw sequence cleaning and taxonomic assignments using PEMA
 - b. Cleaned sequence taxonomic assignments via BOLD or other
 - c. Image analysis via [as yet to be determined] software

What would we like the LW workflow to do?

- 5. Outputs from step 4 are always run through a taxonomic standardisation via WoRMS and NIS check using WRIMS webservices
- Outputs from step 5 can be pushed through biological statistical analysis using RvLab
- 7. Outputs from steps 4 and 5 can be formatted for publishing on EurOBIS
- 8. Outputs can be downloaded to be archived where the user choses, or direct to the LW catalogue via the workflow environment