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Heading for a sixth mass extinction
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How will biodiversity loss affect ecosystem

functioning and human well-being?
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Effects of biodiversity on ecosystem services

Category of service Measure of service provision SPU Diversity level Source Study type N Relationship

Predicted Actual

Provisioning
Crops Crop yield Plants Genetic DS Exp 575 ’ ,
Species DS Exp 100 & gg
Fisheries Stability of fisheries yield Fish Species PS Obs 8 ’ ,
Wood Wood production Plants Species DS Exp 53 ’ ,
Fodder Fodder yield Plants Species DS Exp 271 ’ ,
Regulating

Biocontrol Abundance of herbivorous pests Plants Species DS* Obs 40 \ \
(bottom-up effect of plant diversity) Plants Species DSt Exp 100 > \
Plants Species DS* Exp 287 % gg
Plants Species DS® Exp 100 \ 0
Abundance of herbivorous pests Natural enemies  Species/trait DS* Obs 18 \ \

(top-down effect of natural enemy : : t
diversity) Natural enemies Species DS* Exp/Obs 266 \ \
Natural enemies Species DS+ Exp 38 % gg
Resistance to plant invasion Plants Species DS Exp 120 ’ ’
Disease prevalence (on plants) Plants Species DS Exp 107 \ \
Disease prevalence (on animals) Multiple Species DS Exp/Obs 45 % gg
Climate Primary production Plants Species DS Exp 7 , .
Carbon sequestration Plants Species DS Exp 479 ’ ’
Carbon storage Plants Species/trait PS Obs 33 & gg
Soll Soil nutrient mineralization Plants Species DS Exp 103 ’ ,
Soil organic matter Plants Species DS Exp 85 , ,
Water Freshwater purification Multiple Genetic/species PS Exp 8 ’ .
Pollination Pollination Insects Species PS Obs 7 & gg

Cardinale et al., Nature 486: 59—-67 (2012)



What about the stability
of ecosystem services?

« Large fluctuations in ecosystem
services are harmful because the
negative effects of scarcity are
generally stronger than the positive
effects of abundance

» Risk aversion is widespread, as
attested by the importance of
portfolios and insurance

« A positive effect of biodiversity on the
stability of ecosystem services would
be a powerful additional argument for
biodiversity conservation




Diversity and stability of ecological
systems: An old debate

The “conventional wisdom”: ' |
Diversity and complexity beget stability N

» Regularity of species-rich ecosystems, Charles Elton
“balance of nature” worldview

 Instability of simple theoretical and
experimental models

 Fragility of species-poor 1sland and human-
modified ecosystems to biological invasions

« Stability conferred by alternative energy paths

in food webs ey
Robert MacArthur



Diversity and stability of ecological
systems: An old debate

The new paradigm:
Diversity and complexity beget instability

Large complex systems that are assembled at
random are almost certain to be stable up to a
critical level of complexity, and then to T

suddenly become unstable, yielding the
stability condition:

Bx/f<l

S = number of species (diversity)
C = connectance

p = average interaction strength

inectanes (per ocnt)

Gardner & Ashby, Nature 228: 784 (1970)



How theoreticians see the world
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How empiricists see the world

2 /-
., X ‘-..,, J I Yarlablllty 3
? g ri- - - + ----3-1-«| Vv (inverse of stability)
5 i / ---------------------------------- AN
0 . Mean




Theoreticians and empiricists study
different components of stability
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Measuring variability and invariability

Biomass
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BIODEPTH biodiversity experiment
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Species diversity increases plant
biomass production in grasslands

BIODEPTH Cedar Creek
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Species diversity also stabilises plant
biomass production in grasslands

BIODEPTH Cedar Creek
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The stabilising effect of diversity
conflicts with the new paradigm

Some limitations of the new paradigm:

e There are many components of “stability”: local
stability, variability, resistance, resilience, reactivity...

« These stability properties may differ between each other
and between levels of organisation: May’s theory applies
to communities as sets of interacting populations, not to
aggregate ecosystem properties

A major current challenge is to develop a theory of

ecological stability that spans multiple scales and levels of
organisation and that is directly relevant to empirical work



Ecosystem stability (/o)

Population vs. ecosystem stability
In grasslands

Cedar Creek
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Population vs. ecosystem stability
In grasslands

BIODEPTH

Community
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The whole is the sum of its parts, but it obeys different rules

Hector et al., Ecology 441: 629—-632 (2010)



Productivity

The insurance hypothesis
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Yachi & Loreau, PNAS 96: 1463—1468 (1999)



Log,, community or population size
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Mechanistic approach based on
stochastic community dynamics

Per capita population growth rate:

r(t)=InN.(t+1)=InN.(¢)

1—Ni(.’)—2/3’7];{(t) v o, (1) + Zata?)

mi | Kl < ] - el el /Nl(t)

Intra- and interspecific Demographic
competition stochasticity

Loreau & de Mazancourt, Am. Nat. 172: E48—E66 (2008)
Loreau & de Mazancourt, Ecol. Lett. 16 (s1): 106—115 (2013)



Predicting ecosystem stability from
community composition and biodiversity

Mechanisms driving the stabilising effect of diversity
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de Mazancourt et al., Ecol. Lett. 16: 617-625 (2013)



Testing prediction against data from
four long-term grassland experiments
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Mechanisms driving the stabilising effect

of diversity in grassland experiments
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Mechanisms driving the stabilising effect
of diversity in grassland experiments

* Asynchrony of species

environmental responses:
1/4

* Overyielding reducing
demographic stochasticity:
4/4

e Reduction of observation
error:

2/2

de Mazancourt et al., Ecol. Lett. 16: 617-625 (2013)



Mechanisms driving the stabilising effect
of diversity in forest models

e * Strong effect of species
e osynchrony, mostly due to
responses to small-scale
disturbances

L0 N : e Weak effect of demographic
S stochasticity

Morin et al., Ecol. Lett. 17: 1526—1535 (2014)



Linking biodiversity, ecosystems
and people: The scale mismatch

Integrated socio-ecological system
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Isbell et al., Nature 546: 65-72 (2017)



Ecological stability across scales:

o, B and y variability

Gamma variability (y., = CV,?)

Yo = %, 1By

F &

Alpha variability (a., = CV,?)

Beta variability (84 = 1/¢)

2
Xy = cv Species ¢Spe('ies

Species variability (CV Szp(,(.,.es)
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— spatial unevenness
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— spatial correlation of environment

— dispersal

Species synchrony (@, cs)
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Wang & Loreau, Ecol. Lett. 17: 891-901 (2014)



Ecosystem stability across scales:
o, B and y variability

Alpha variability / Betavariability = Gamma variability

(acv) (B CV) ( ycv)
T/ T+ - (given a, or 8,,)
Alpha diversity X Betadiversity = Gamma diversity
(ap) (Bo) (vp)

Biodiversity is important for ecosystem stability, not only
through its local effects but also through [ diversity, which

enhances spatial asynchrony
Wang & Loreau, Ecol. Lett. 19: 510518 (2016)



log,, (Invariability)

Ecological stability across scales:
Invariability—Area Relationship (IAR)

Inv(A) = _ = Inv(l)[

CV?*(A)

Correlation p decays with
distance exponentially
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Wang et al., Nat. Commun. 8: 15211 (2017)



Ecosystem stability across scales:
|AR of global primary productivity
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IAR provides a powerful potential tool to predict the effects of

global changes on the stability of ecosystem services
Wang et al., Nat. Commun. 8: 15211 (2017)



Decorrelation by

species turnover
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Ecosystem
stability across
scales: IAR



Diversity and stability of ecological
systems: Who was right?

VS

Robert May

A ‘
Robert MacArthur



Diversity and stability of ecological
systems: Some conclusions

» C(lassical ecological theory based on asymptotic
resilience has been largely divorced from empirical data
so far

 Invariability 1s a more flexible and empirically relevant
measure of stability

 Invariability-based theory provides a completely new
perspective on the old diversity—stability debate

It predicts different diversity—stability relationships at
the population and ecosystem levels that agree with
empirical and experimental data



Diversity and stability of ecological
systems: Some conclusions

 Invariability-based theory also provides a consistent
framework for studying ecosystem stability across
scales

* There 1s now strong theoretical and experimental
evidence that biodiversity generally stabilises
ecosystem properties at all scales, thereby playing an
important role in the steady provision of ecosystem
Services
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