

MAPPING WITH SPATIAL REGIONS FOR IMPROVED ECOSYSTEM MODELS

Julien Radoux, Axel Bourdouxhe, Thomas Coppée, Marc Dufrêne, Pierre Defourny

Nature is complex

Models simplify

Spatial objects

- Categorical description
- Well defined boundaries

Spatial regions

- Arbitrary boundaries
- Quantitative description

Field

- No boundaries
- Quantitative variables

Land cover needs context

« Historical » use of grids for matching inventories

Relief draws landscapes

Land cover proportions inside landscape polygons Automated segmentation

crop

Coniferous

Pasture

Deciduous

86,000001 - 100,000000

3 Kilometers

Urban

0 0,75 1.5

enriched with 100+ variables

From remote sensing	Others		
Land cover proportions	Soil parameters		
Height	Specific ecological value	· .	
Topography	Protected areas	1 Car	
Light pollution	Climate	1 Martin 1	
Snow and vegetation	Distance to water, roads,		
phenology methos	Settlements		

1 March Bart Ma

1 4 March

the second

Good results on biotope models

Relative contribution of topography

	0	0.5	1	2
Matches	17	60	87	109
GAM OA _{Tot}	99.8	99.8	99.9	<u>99.8</u>
GAM OA	96.1	95.7	97.3	95.2
GAM AUC	81.4	95.6	97.6	95.2
GAM PA	77.2	93.1	97.0	92.7
GAM UA	15.0	21.9	37.2	22.5

(same ranking with Random Forest)

Accuracy indices taking area of spatial regions into account

Radoux et al, 2019, Remote Sensing

Red: identified spatial regions Green : field inventory

Shape and size tested for habitats

Shape is important for conservation

Geographic objects

Regular grid

Irregular polygons better than regular grid for 8 out of 13 species

Delangre et al, 2017, Ecological Informatics

Conclusion

Spatial support is of paramount importanc

Topography positively contributes to spatial region homogeneity

Quantitative parameters facilitate model making

uclouvain.be/lifewatch to test « for real »

EARTH & LIFE

Also supporting data distribution and ecosystem dynamics

ScienceAdvances

Saigas on the brink: Multidisciplinary analysis of the factors influencing mass mortality events

Richard A. Kock, Mukhit Orynbayev, Sarah Robinson, Steffen Zuther, Navinder J. Singh, Wendy Beauvais, Eric R. Morgan, Aslan Kerimbayev, Sergei Khomenko, Henny M. Martineau, Rashida Rystaeva, Zamira Omarova, Sara Wolfs, Florent Hawotte, Julien Radoux and Eleanor J. Milner-Gulland

