

Rohaifa Khaldi, Siham Tabik, Sergio Puertas-Ruiz, Julio Peñas de Giles, José Antonio Hódar Correa, Regino Zamora, Domingo Alcaraz-Segura

Motivation

- Understand the structure and dynamics of high mountain shrubs.
- Study the impact of climate change on persistent shrub dynamics and distribution.
- Monitor and protect high mountain biodiversity and ecosystems.

Understand the structure and dynamics of high mountain shrubs.

St How can we reach this?ge on persistent shrub dynamics and dist/bJuniperus mapping.

Monitor and protect high mountain biodiversity and ecosystems.

Juniperus

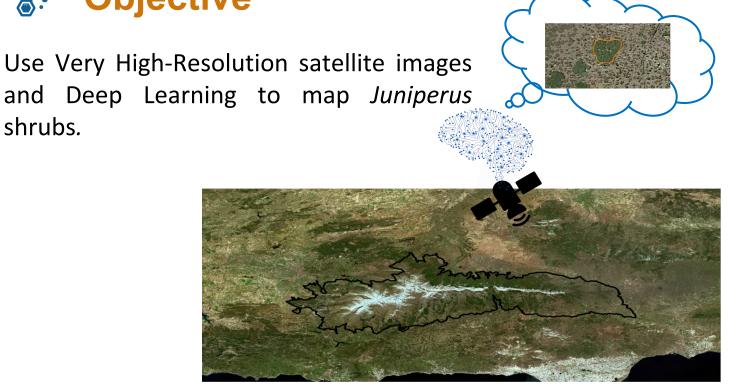
Why Juniperus?

- Long living shrub.
- Persistent shrub.
- ✓ Sentinel for climate change.

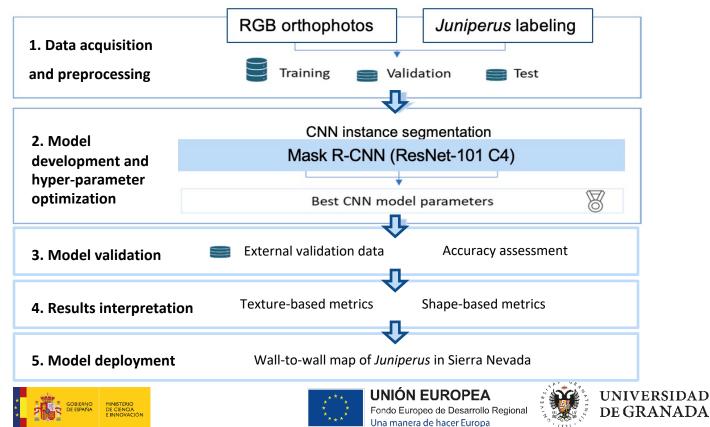
Juniperus

The classical field surveying method is very challenging:

- Inaccessible areas.
- Labor-intensive.
- Pricey.
- Time-consuming.
- Unsustainable.

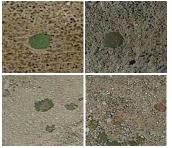


UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa



UNIÓN EUROPEA Fondo Europeo de Desarrollo Regiona Una manera de hacer Europa

Methodology


Data acquisition and preprocessing

BEeS Threats and challenges to biodiversity and ecosystem Seville, 22-24 May 2023 conservation from an eScience perspective

Different land covers

Different colors

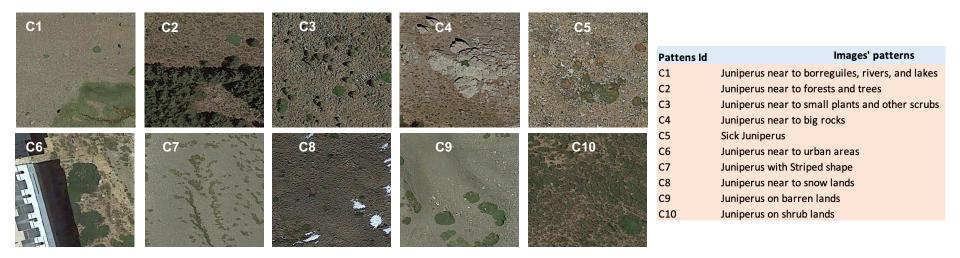
SMART Ecomountains

Different densities

conservation from an eScience perspective

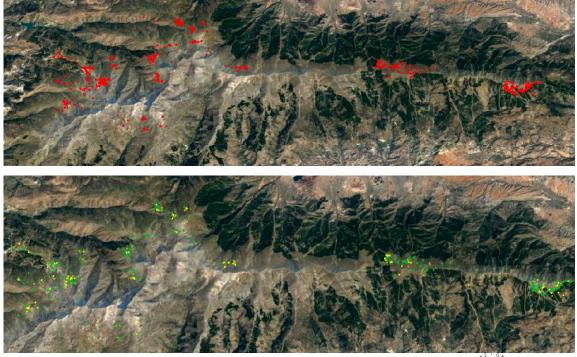
Different sizes

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa


Different surroundings

Different shapes

BEeS Threats and challenges to biodiversity and ecosystem conservation from an eScience perspective conservation from an eScience perspective **Data acquisition and preprocessing**


Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

BEeS Threats and challenges to biodiversity and ecosystem conservation from an eScience perspective Data acquisition and preprocessing

Distribution of all instances.

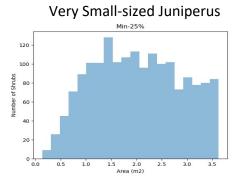
Distribution of instances per data split: Train (green), Test(Orange), and Internal Validation (Yellow).

BEeS Threats and challenges to biodiversity and ecosystem conservation from an eScience perspective **Data acquisition and preprocessing**

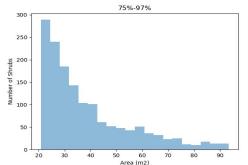
Data name	Image size	Pixel size		
Train	448 x 448			
Test	448 x 448	13 cm		
Val	448 x 448	15 CM		
External Val	420 x 336			

Data name	Number of		Number of instances					
	images	All sizes	Very Small	Small	Medium	Large	Very Large	
Train	570	5459	1397	1388	1333	1187	154	
Test	75	690	120	165	199	172	34	
Val	67	660	179	154	170	140	17	
Total	712	6809	1696	1707	1702	1499	205	

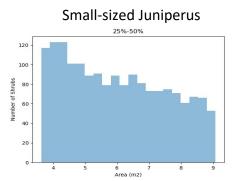
Statistics Per Areas (m2)								
Count	Mean	Std	Min	25%	50%	75%	97%	Max
6809	19,97	42,39	0,13	3,62	9,08	20,82	93,6	761,42

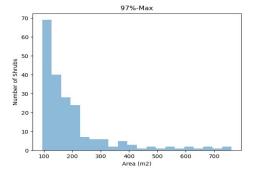


Fondo Europeo de Desarrollo Regiona Una manera de hacer Europa

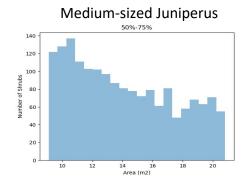


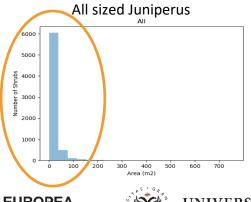
Data acquisition and preprocessing


BEeS Threats and challenges to biodiversity and ecosystem


Large-sized Juniperus

Very Large-sized Juniperus




conservation from an eScience perspective

BEeS Threats and challenges to biodiversity and ecosystem Seville, 22-24 May 2023 conservation from an eScience perspective Model Development and Hyper-parameter Optimization

- Maximum number of iterations.
- Optimization algorithm.
- Learning rate.
- Learning rate scheduler.

- Batch size.
- Number of boxes per image to sample from RPN.
- Data augmentation.
- Backbone.

Model Evaluation

Juniperus Segmentation								
Metric @ IoU threshold	Very Small	Small	Medium	Large	Very Large			
Recall @ 0.50	0,78	0,87	0,92	0,92	0,97			
Precision @ 0.50	0,71	0,84	0,90	0,90	0,95			
F1 @ 0.50	0,739	0,856	0,911	0,911	0,962			
Recall @ 0.75	0,55	0,74	0,84	0,85	0,88			
Precision @ 0.75	0,41	0,68	0,81	0,82	0,85			
F1 @ 0.75	0,469	0,709	0,823	0,836	0,865			
AR @ All	0,47	0,59	0,70	0,74	0,77			
AP @ All	0,38	0,54	0,67	0,71	0,73			
AF1 @ All	0,422	0,563	0,684	0,725	0,750			

Data nameImage sizeNumber of imagesNumber of instancesExternal Val420 x 3361411828

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

Evaluation algorithm using IoU metric:

1- Look for all detections B_i overlapping with the ground truth A.

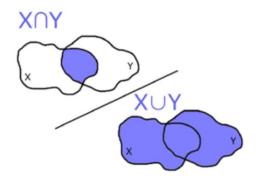
2- For each detection B_i compute the overlapping metric with the ground truth:

$$IoU(A, B_i) = \frac{|A \cap B_i|}{|A \cup B_i|}$$

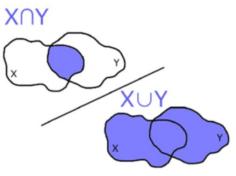
3- Select the detection
$$B_s$$
 with the highest IoU :
 $B_s = \underset{B_i}{\operatorname{argmax}} \{IoU(A, B_i) : i \in [n]\}$

4- If $IoU(A, B_s) \ge \theta$: A is true positive (TP).

else:


A is false negative (FN).

Fondo Europeo de Desarrollo Regiona Una manera de hacer Europa



IOU is an unfair evaluation metric in our case:

- Overlapping objects (densely packed). .
- Significant variation in size.
- Estimated annotations.
- Many detections of small parts of the shrub are penalized.

BEeS Seville, 22-24 May 2023 Model Validation

BEeS Threats and challenges to biodiversity and ecosystem conservation from an eScience perspective

New adapted overlapping evaluation metrics:

Evaluation algorithm using **IoGTA** metric:

1- Look for all detections B_i overlapping with the ground truth A.

2- For each detection B_i compute the overlapping metric with the ground truth: $IoGTA(A, B_i) = \frac{|A \cap B_i|}{|A|}$

```
3- Select the detection B_s with the highest IoU:

B_s = \underset{B_i}{\operatorname{argmax}} \{IoGTA(A, B_i) : i \in [n]\}

4- If IoGTA(A, B_s) \ge \theta:

A is true positive (TP).
```

else:

A is false negative (FN).

New adapted overlapping evaluation metrics: Evaluation algorithm using MIoGTA metric:

1- Look for all detections B_i overlapping with the ground truth A.

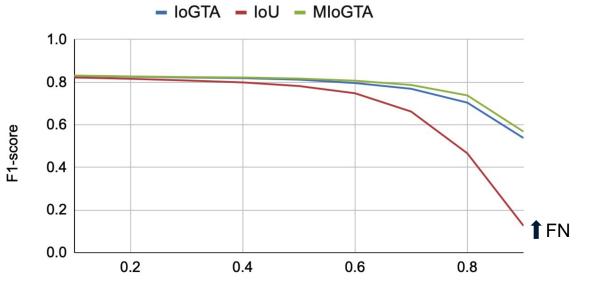
2- Compute the overlapping metric between the ground truth and **all** the detections:

$$MIoGTA(A, \{B_i : i \in [n]\}) = \frac{\sum_{i=1}^n |A \cap B_i|}{|A|}$$

3- If $MIoGTA(A, \{B_i : i \in [n]\}) \ge \theta$:

A is true positive (TP). else:

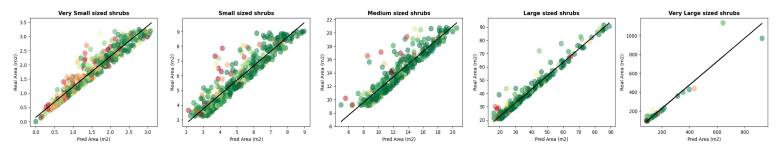
A is false negative (FN).

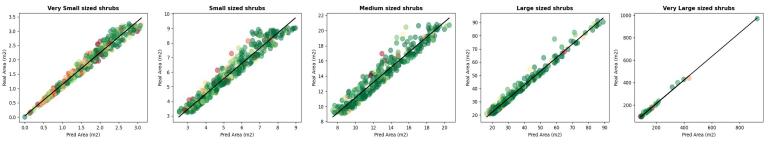


Comparison between the overlapping metrics

loGTA and MIoGTA are less sensitive the to increase in overlapping threshold compared to IoU.

Overlapping threshold


Fondo Europeo de Desarrollo Regiona Una manera de hacer Europa



Model Validation

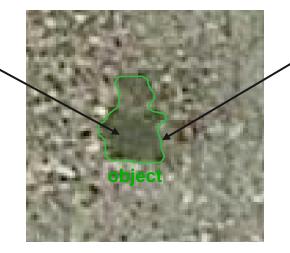
MIoGTA threshold = 0.5

MIoGTA threshold = 0.75

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

Shape **Texture**

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa



Results Interpretation

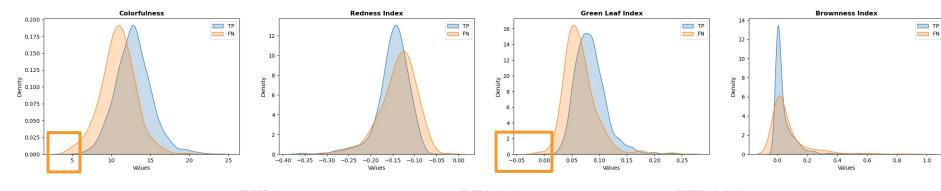
MINISTERIO DE CIENCIA

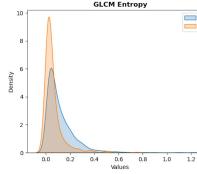
Texture

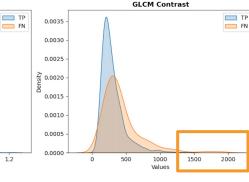
- Colorfulness
- Redness index
- Green leaf index
- Browenness index
- Entropy
- Contrast
- Dissimilarity
- Homogeneity
- Energy
- Correlation

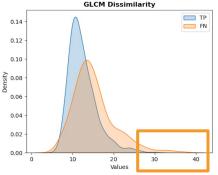
Shape

- Compactness
- Complexity
- Elongation
- Convexity

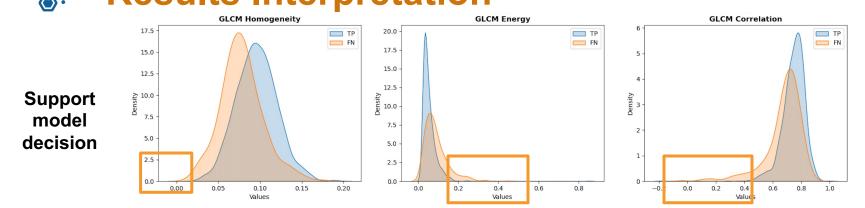


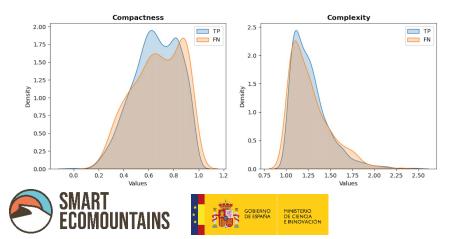


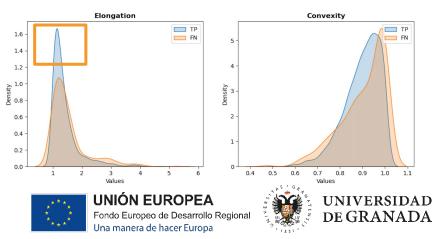


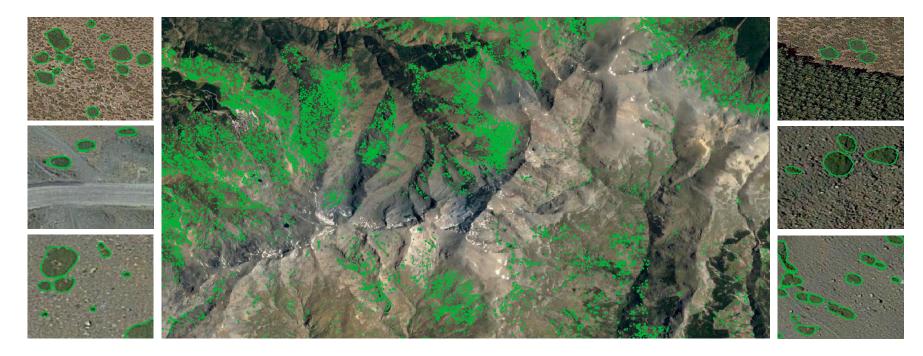


Results Interpretation








BEeS Threats and challenges to biodiversity and ecosystem Seville, 22-24 May 2023 conservation from an eScience perspective Results Interpretation

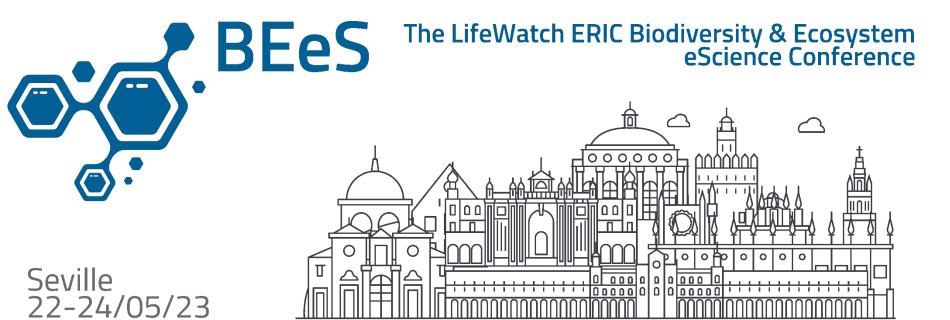
BEeS Threats and challenges to biodiversity and ecosystem Seville, 22-24 May 2023 conservation from an eScience perspective Model Deployment

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

- > We digitized more than 6809 Juniperus *shrubs*.
- > We created a Deep learning-based model for high mountain shrubs detection.
- > We validated the model using external validation data.
- > We proposed two new overlapping metrics for model evaluation.
- > We proposed an object-based interpretation design.
- > We created a wall-to-wall map of shrubs in Sierra Nevada with high accuracy.

Email: rohaifa.khaldi@lifewatch.eu

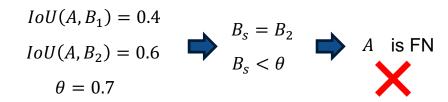
Thank you!



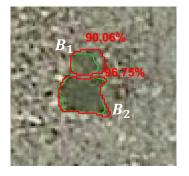
www.lifewatch.eu/bees-2023

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa

UNIÓN EUROPEA Fondo Europeo de Desarrollo Regional Una manera de hacer Europa



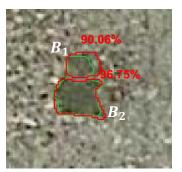
Email: rohaifa.khaldi@lifewatch.eu



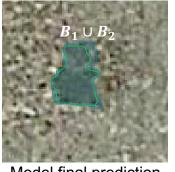
IoU is an unfair evaluation metric in our case:

Ground truth A

Model predictions $\{B_1, B_2\}$


New adapted overlapping evaluation metrics:

 $MIoGTA(A, \{B_1, B_2\}) = 0.95 \ge \theta = 0.7$



Ground truth A

Model predictions $\{B_1, B_2\}$

Model final prediction

