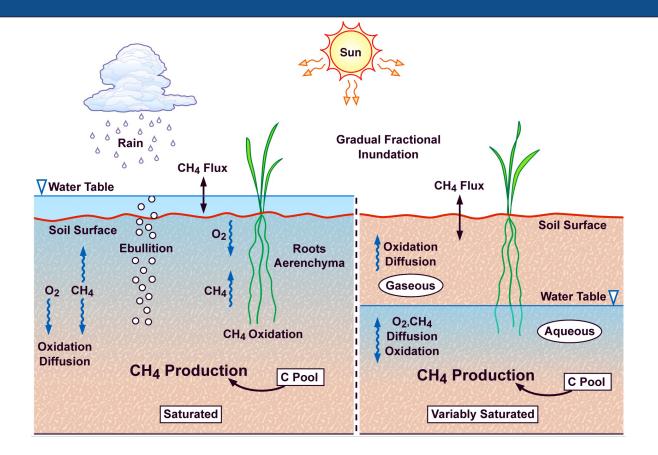
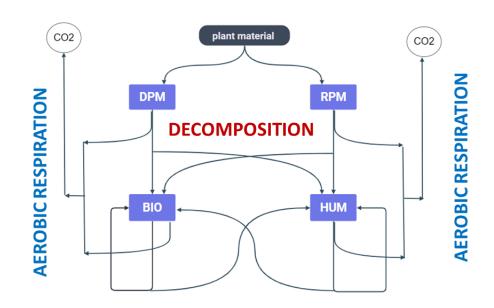
Carmela Marangi

Modelling of Soil Organic Carbon dynamics in wetlands


Joint work of V. Bohaienko, F. Diele, C. Marangi, A. Martiradonna, A. Provenzale

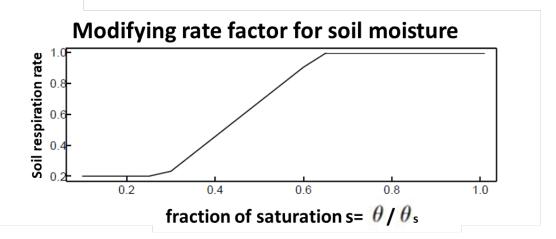
Modelling of Soil Organic Carbon Dynamics in Wetlands

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., ... & Hess, P. (2011). Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. *Biogeosciences*, 8(7), 1925-1953.



RothC Model

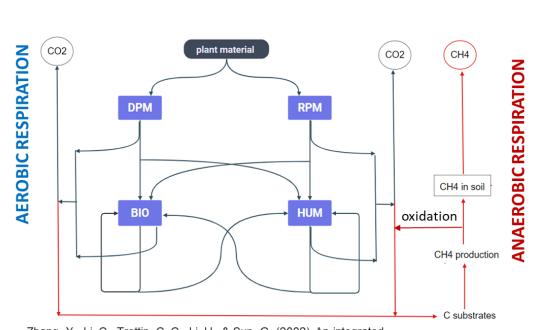
Model's assumption:


In unsaturated zones of soil SOC decomposition is performed by bacteria that respire CO₂

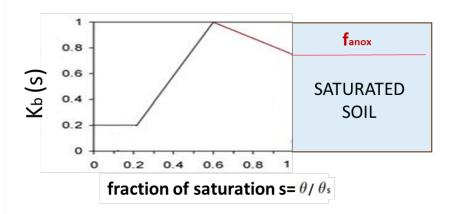
Diele, F., Marangi, C., & Martiradonna, A. (2021). Non-standard discrete RothC models for soil carbon dynamics. *Axioms*, *10*(2), 56.

Carbon decomposition is modeled by:

Intrinsic respiration rates that describe the transition from bacteria activity resulting in CO₂ generation



Model's assumptions



Model's assumption:

In large saturated zones of soil SOC decomposition is performed by different bacteria that respire CO₂ or CH₄

Zhang, Y., Li, C., Trettin, C. C., Li, H., & Sun, G. (2002). An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. *Global biogeochemical cycles*, *16*(4), 9-1.

Modifying rate factor for soil moisture

$$\mathsf{Kb}\left(\mathsf{S}\right) = \begin{cases} 0.2, & \text{if } s(\mathsf{t}) \leq s_{min} \\ 1 - 0.8 \frac{s_0 - s(\mathsf{t})}{s_0 - s_{min}}, & \text{if } s_{min} < s(\mathsf{t}) \leq s_0 \\ 1 - (1 - \mathsf{f}_{\mathsf{anox}}) \frac{s(\mathsf{t}) - s_0}{1 - s_0}, & \text{if } s_0 < s(\mathsf{t}) \leq 1 \end{cases}$$

The vertical water flow can be significant in wetlands and can influence the dynamics of in-depth SOC concentration

water table

h(z,t)<0

Model's structure

- Water head pressure h=h(z,t) [L] dynamics in satured/unsatured soil described by Richardson equation (1D Richards' equation)
- SOC diffusion-advection-reaction equations were: reaction given by modified RothC for wetland (described before); advection term $v(z,t) = K(h) \left(\frac{\partial h}{\partial z} 1\right) \left[\operatorname{LT}^{-1} \right]$ for describing the transport of SOC due to vertical water flow related to h according to the Darcy's law
- **temperature transport equation** for describing the dynamics of in-depth temperature distribution

Saturated soil

z=L

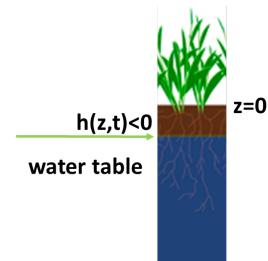
The vertical water flow can be significant in wetlands and can influence the dynamics of in-depth SOC concentration

h(z,t)<0 water table

Model's structure

➤ Water head pressure h=h(z,t) [L] dynamics Richardson equation (1D Richards' equation)

$$\left(C(h,z) + \frac{\theta(h,z)}{\theta_s(z)}S_s(z)\right)\frac{\partial h(z,t)}{\partial t} = \frac{\partial}{\partial z}\left(k(h,z)\left(\frac{\partial h(z,t)}{\partial z} - 1\right)\right)$$


z=L

The vertical water flow can be significant in wetlands and can influence the dynamics of in-depth SOC concentration

Model's structure

➤ SOC compounds diffusion-advection-reaction equations, the reaction part of which is in the form of RothC model for wetland;

$$\sigma \frac{\partial c_i(z,t)}{\partial t} = D_i \frac{\partial^2 c_i(z,t)}{\partial z^2} - v(z,t) \frac{\partial c_i(z,t)}{\partial z} + (\rho(z,t) A \mathbf{c}(z,t) + \mathbf{b}(z,t))_i,$$

$$i = 0,...,3$$
Original RothC model

The vertical water flow can be significant in wetlands and can influence the dynamics of in-depth SOC concentration

h(z,t)<0

water table

Model's structure

➤ Temperature transport equation (to consider in depth distribution of temperature influence of microbial activity).

$$C_T \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) - v(z) \frac{\partial T}{\partial z}$$

$$T|_{z=0} = T_a, \ \frac{\partial T}{\partial z}|_{z=L} = 0$$

h(z,t)>0

z=L

Boundary conditions

In-depth RothC for wetlands.

Boundary conditions that can take into account periodical flooding

h(z,t): water head pressure

Non submerged soil: prescribed flow (Neumann condition) $-K(h(0,t))\left(\frac{\partial h}{\partial z}(0,t)-1\right)=P(t)-E(t)$ water table $l_e(t)$ water level in an external source $h(l,t)=l-l_e(t)$

Scenario

The considered scenario was the growth of rice in the lands of Ebro Delta. Rice fields are flooded from the end of April to September-October. Flooding was modelled by linear change of water level Le(t) from the value below bottom depth in December-January to the level of 10 cm above soil surface in May-September

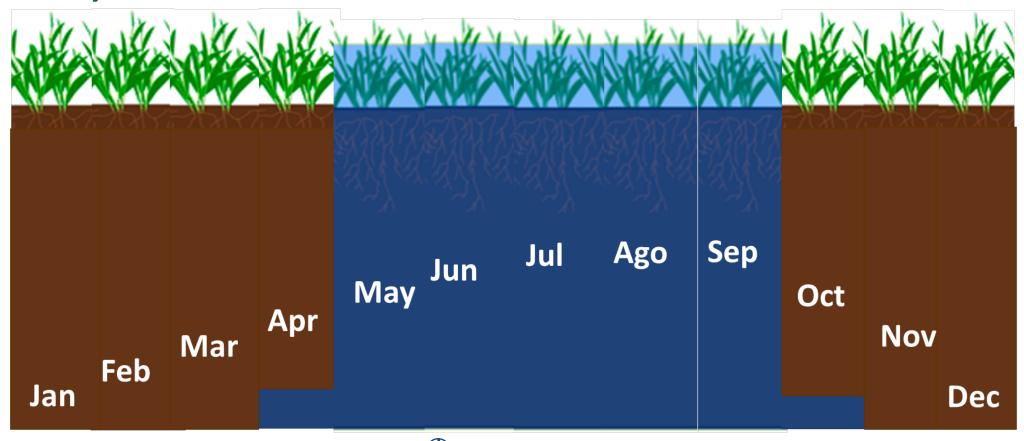
Monthly averaged precipitation and air temperature data was taken from the website https://en.climate-data.org/europe/spain/catalonia/amposta-56879/ for the city of Amposta, the nearest to the Ebro delta. Having only temperature data, evapotranspiration was calculated according to the Hargreaves-Saman formula

M. Belenguer-Manzanedo, C. Alcaraz, M. Martinez-Eixarch, A. Camacho, J. Morris, C. Ibanez, Modeling soil accretion and carbon accumulation in deltaic rice fields, Ecological Modelling 484 (2023) 110455

Param.	Description	Value	Dimension	Ref.
θ_r	Residual water content	0.098		Obtained from clay, silt, and sand content using Rosetta v.1 model
θ_s	Saturated water content	0.422		-//-
a	van Genuchten model's pa-	0.005		-//-
n	rameter -//-	1.436		-//-
K_s	Coefficient of filtration	1.1810^{-2}	m/day	-//-
β	Mualem model's pa- rameter	0.678		-//-
S_s	Specific storage	$10^{-5} - 10^{-3}$	m^{-1}	Possible range of values for silt- rich soils according to the data in [5]
l	Bottom depth	1	m	[6]

Table 1: The val	lues of parameters	for the Richards' -	Richardson equation
------------------	--------------------	---------------------	---------------------

Month	ET, Precipitation,		I m
WIOIIGH	mm/day	mm/day	L_e, m
Jan	0.95	1.47	4
Feb	1.21	1.12	2.5
Mar	1.81	1.38	1.5
Apr	2.59	1.81	0.75
May	3.37	1.90	-0.1
Jun	4.23	0.95	-0.1
Jul	4.41	0.77	-0.1
Aug	4.15	1.21	-0.1
Sep	3.28	2.33	-0.1
Oct	2.33	2.51	0.75
Nov	1.38	1.73	2.5
Dec	0.95	1.47	4


Table 2: The values of parameters

One-year simulation

References

Bohaienko, V.; Diele, F.; Marangi, C.; Tamborrino, C.; Aleksandrowicz, S.; Woźniak, E. A Novel Fractional-Order RothC Model. Mathematics 2023, 11, 1677. https://doi.org/10.3390/math11071677

Diele F., Luiso I., Marangi C., Martiradonna A., SOC-reactivity analysis for a newly defined class of two-dimensional soil organic carbon dynamics, Applied Mathematical Modelling, Volume 118, 2023, Pages 1-21, https://doi.org/10.1016/j.apm.2023.01.015.

Diele, F., Luiso, I., Marangi, C. et al. Evaluating the impact of increasing temperatures on changes in Soil Organic Carbon stocks: sensitivity analysis and non-standard discrete approximation. Comput Geosci 26, 1345–1366 (2022), https://doi.org/10.1007/s10596-022-10165-3.

Diele, F., Marangi, C., Martiradonna, A. (2021). *Non-Standard Discrete RothC Models for Soil Carbon Dynamics*, Axioms, 10(2), 56.

https://github.com/CnrlacBaGit/NSRothC

LifeWatch ERIC 2024 Thematic Service Workshop Series

Thank you for your attention! Any questions?

Taxonomy | Brussels, Belgium, 30 January 2024

Climate Change Impact on Biodiversity Patterns | Lecce, Italy, 21-22 February 2024

Animal Movement and Biologging | Ostend, Belgium, 22 March 2024

Biogeography | Bologna, Italy, 4-5 April 2024

Biodiversity Observatory Automation | Ljubljana, Slovenia, 11 April 2024

Habitat Mapping | Aveiro, Portugal, 3 May 2024

