

Session: Ecological Responses to Climate Change

1 July 2025 | 08:30-10:30

Climate change stress in benthic marine invertebrates: insights from multidimensional analysis

Presenter: Thanos Dailianis, IMBBC-HCMR

Eva Chatzinikolaou, Kleoniki Keklikoglou, Emmanouela Vernadou, Panagiotis Grigoriou, Nikos Papandroulakis, Athanasios Anastasiadis, Elisavet Kaitetzidou, Harris Markomanolaki, Anastasia Gioti, Georgia Tarifa, Jon Bent Kristoffersen

 Seawater temperature and acidity in the Mediterranean are expected to increase fast in the next 10 years

Dayan et al. 2023 Frontiers in Marine Science

Zittis et al. 2022 Reviews of Geophysics

 Ongoing climate change is predominantly affecting sessile organisms, since they cannot escape stressors

Chatzimentor et al. 2022 Global Change Biology

 Organism holobionts respond to shifting conditions with changes in their morphology, physiology, and functions

Lejeusne et al. 2010 Trends in Ecology & Evolution

Gissi et al. 2021 Science of the Total Environment

 Local adaptation and varying resilience among geographically distinct populations shape organismal responses

Project scope

Multi-level Approaches to assess Climate Change Impact to Marine Organisms

The overall objectives of the proposed research project are:

- To implement an integrative approach for the estimation of climate change impact on different marine invertebrate taxa with partial or low motility.
- To examine the different mechanisms molecular and physiological– activated to cope with the imposed stress factors, as well as to investigate the alterations in structural morphology and associated microsymbiotic communities.
- To study intra-species variation in response to thermal and oxidative challenges, in order to unravel the potential diversity of adaptations in geographically distinct populations.

Chondrilla nucula

Hexaplex trunculus

Experimental approach

 Multi-level Approaches to assess Climate Change Impact to Marine Organisms (MACCIMO)

Experimental approach

 Multi-level Approaches to assess Climate Change Impact to Marine Organisms (MACCIMO)

WP3 Assessment of morphological characters

- Scanning of organisms using microCT and creation of digital 3-dimensional models
- Analysis of morphological changes as a result of experimental treatment

WP5 Assessment of gene expression

- Assessment of the expression of selected reference and target genes through qPCR
- Analysis of the differences in gene expression as a result of experimental treatment

WP4 Assessment of physiological traits

- Evaluation of metabolic rate as expressed by O₂ consumption in metabolic chambers
- Analysis of differences in metabolic rate as a result of experimental treatment

WP6 Assessment of microsymbionts

- Characterisation of the symbiotic bacterial and fungal communities via metabarcoding
- Assessment of microsymbiont community shifts as a result of experimental treatment

X Ray based 3D imaging technique allowing measurements of specific parameters (e.g. density, thickness, porosity) on the specimens microstructure.

Density = the relative density of the specimen (i.e. grey scale values) to ensure comparability between scans

Structure thickness = average diameter of the largest spheres which can be "fitted" in each point of the specimen structure

Porosity = the % volume of the closed, open and total pores

Structure separation = the average pore diameter (um)

3D Analysis using micro-CT Hexaplex trunculus

Hexaplex trunculus

South Control

North Control

Metabolic rate - Experimental setup

water bath tank with respiration chambers

tank providing seawater at experimental conditions

Metabolic rate as O₂ consumption

Climate risk – an emerging threat

Chatzimentor et al. 2022 Global Change Biology

A four-step process for assessing climate risk to Mediterranean marine species

- Trait-Based Vulnerability.
- Exposure Estimation
- Risk Matrix Integration

DOI: 10.1111/gcb.16577

RESEARCH ARTICLE

Global Change Biology
WILEY

Are Mediterranean marine threatened species at high risk by climate change?

Future outlook – gaps and necessities

Controlled experiments

11

In situ experiments

Testing of single stressors →

Testing of combined stressors

Cumulative stressors (synergistic)

Tolerance range

Optimal conditions

Innate (genetic) resilience

Intraspecific variability

Acquired resilience (adaptation)

Physiological response

Species < Habitats

Thank you!

Questions? maccimo@hcmr.gr

This research was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the "2nd Call for HFRI Research Projects to support Faculty Members & Researchers", Project Number 3280

