Functional biogeography of invasive species: stable isotope analysis to establish the trophic position of two widely-distributed omnivorous crustaceans

When the Internal Joint Initiative was instigated by LifeWatch ERIC in 2019 to build the next generation of Virtual Research Environment (VRE), informaticians at the ICT-Core in Spain and the Service Centre in Italy started working closely with scientists involved in biodiversity and ecosystem research into Non-indigenous and Invasive Species (NIS) across Europe.  

Of the five validation cases that helped shape the architecture and workflows of the VRE, this page outlines the work done on Callinectes sapidus, also known as the Atlantic Blue Crab, an aggressively invasive species of western Atlantic origin, that has progressively invaded the Mediterranean Sea, displacing native species and disrupting marine habitats.

Crustaceans

Background
Biological invasions are acknowledged to be significant environmental and economic threats, yet the identification of key ecological traits determining invasiveness of species has remained elusive. One unappreciated source of variation concerns dietary flexibility of non-native species and their ability to shift trophic position within invaded food webs. Trophic plasticity may greatly influence invasion success as it facilitates colonisation, adaptation, and successful establishment of non-native species into new territories. In addition, having a flexible diet gives the introduced species a better chance to become invasive and, as a consequence, to have a strong impact on food webs, determining secondary disruptions such as trophic cascades and changes in energy fluxes. The deleterious effects can affect multiple trophic levels.

Introduction
Crustaceans are considered the most successful taxonomic group of aquatic invaders worldwide. Their ability to colonise and easily adapt to new ecosystems can be ascribed to a number of ecological features including their omnivorous feeding behaviour. This validation case study focuses on two invasive crustaceans widely distributed in marine and freshwater European waters: the Atlantic blue crab Callinectes sapidus and the Louisiana crayfish or red swamp crayfish Procambarus clarkii.

Callinectes sapidus and Procambarus clarkii are opportunistic omnivores that feed on a variety of food sources from detritus to plants and invertebrates. For this reason, they represent a good model to investigate the variation of trophic niches in invaded food webs and their ecological impact on native communities. The ecological consequences of the invasion and establishment of these invasive crustaceans can vary from modification of carbon cycles in benthic food webs to regulation of prey/predator abundance through bottom-up and top-down interactions. Understanding how the trophic ecology of these invasive crustaceans shapes benthic food webs in invaded ecosystems is crucial for an accurate assessment of their impact.  The analysis of stable isotopes can provide important clues on the trophic effects of invasive species within non-native ecosystems by evaluating changes in their trophic position and characteristics of their trophic niche.

Aims
This validation case uses a collection of stable isotopes (δ13C and δ15N) of C. sapidus and P. clarkii and their potential prey in invaded food webs to quantify changes in the trophic position of the invaders and to assess post-invasion shifts in their dietary habits. This case study additionally evaluates the main environmental drivers involved in trophic niche adaptations and whether such bioclimatic predictors influence broad-scale patterns of variation in the trophic position of the invader. 

The workflow will soon be available on this page.

Open Kowledge Map